

What will drive India's four energy transitions?

Dr Arunabha Ghosh

CEO

NTPC Business School 4 September 2020

© Council on Energy, Environment and Water, 2020

CEEW – Among Asia's leading policy research institutions

Energy Access

Industrial Sustainability &

Competitiveness

Technology, Finance & Trade

Renewables

Low-Carbon Pathways

Power Sector

Risks & Adaptation

CEEW Centre for Energy Finance

2

Nearly 100-member team believing in leadership by initiative

3|

VT-EHT

IMAGE: Business Standard

A tale in three charts

YEARS

SOURCE: King et al (2015); Figure by Jeremy Shakun, data from Lüthi et al., 2008 and Jouzel et al., 2007; Berkeley Earth (2019); NOAA (2019)

Carbon budget gets consumed by the biggest polluters

Based on their NDC trajectories, China, USA, EU and Japan will appropriate 49% of global carbon space between 2018 and 2030

6|-

Cyclones Amphan and Nisarga among the strongest ever

- India experienced 478 extreme weather events since 1972, most occurring after 2005
- The frequency of cyclones is rising, jumping from 33 in the 1980s to 58 in the 2010s

India is particularly vulnerable

- Average temperature in India increased 0.7C during 1901-2018
- If emissions continue at the high end of the predicted range by 2100 the temperature could rise 4.4C relative to the 1976-2005 average
- Frequency of heat waves could increase three to four times, with average duration doubling
- From 1998 to 2017 climate-related disasters caused \$80 billion of damage
- The Hindu Kush Himalaya region, source of 10 major rivers, could endure a temperature rise of 5.2C by 2100
- In the worst case, CEEW analysis finds that food crop losses could be \$1.4 trillion-\$2.7 trillion at 2015 prices during 2050-2100

3|

Four energy transitions

9 | -

ENDING ENERGY POVERTY?

IMAGE: Jaun Rizvi

10 | --

118 million have moved out of absolute electricity poverty in 3 years (Past decade 350 million)

Access to electricity in six states

11|-

But long way to go, as only 20% of rural households are in top-two tiers

Electricity Access Evolution

YEARS

SOURCE: CEEW (2018)

Quality and reliability of supply remain main issues for Tier 0 HHs

Duration of supply has improved, but reliability remains a concern

14 | -

160 million have gained access to clean cooking energy in 3 years (Past decade, 700 million)

SOURCE: CEEW (2018)

LPG is the driver for all the change, but a long way to go

LPG connection and its use as a primary fuel has increased two-fold

LPG adoption and use in rural areas of six major states

16|-

Affordability remains the biggest challenge to adopt and use LPG

0.0

YEARS

1/4th have come our of absolute electricity poverty, but only 20% in top-two tiers

Reliability and quality of supply remain the big concerns

1/3rd have gained clean cooking energy access, but only 6% in top tier

Affordability of LPG and fuel stacking continue to be the biggest challenges

Source: CEEW (2018)

RURAL TO URBAN ENERGY DEMAND?

19|-----

IMAGE: pixabay

Can we make solar irrigation sustainable?

Powering Livelihoods: A \$50 billion opportunity

Solar-powered paddle loom, Gondal, Gujarat

Solar-powered amber charkha, Gondal, Gujarat

Solar-powered sewing machine, Chitradurga, Karnataka

Solar-powered refrigerator, Chitradurga, Karnataka

21

Solar-powered milking machine, Chitradurga, Karnataka

Energy-efficient sugarcane juicer, Rajkot, Gujarat

Energy-efficient dal mill, Wardha, Maharashtra

Solar-powered flour mill, Jawhar, Maharashtra

Using our roofs? DISCOM-led business models

2. For the creditless: On-bill financing model

1.b For the roofless: Community Southernts subscription mode

Provide capital

to a solar pov

Subscribe

(з

Dispatch

electricity to the grid

Monthly

added to

electricity

credit

bill

000

╩

Developers

DISCOMs

High rise societ-

Financiers

Pav

financing interest

Pass on

fee minus

service fee

Pay monthly

subscription

fee

subscription

3. For all: Solar partners model

IMAGE: Unsplash

22

SOURCE: Kuldeep, Saji, Chawla / CEEW (2018)

Sustainable mobility for a country on the move?

Electric vehicles (EVs) on the rise, but fast enough?

- Total registered EV stock for FY20: 530,560 vehicles, with 166,289 registered EVs sales
- Registered EV sales increased by 13.45% from 2018-19 to 2019-20;
- Projections for EV stock rise to 23.8 million by FY30
- In the unregistered EV market (2-wheelers & 3-wheelers), stock of e-rickshaws is 1.5 million as of FY20; (industry estimates stating that 246,000 registered and unregistered EVs were sold in 2019-20)

0.0

Import burden of an electric car would be 4-6 times lesser for EVs in 2030

SOURCE: Soman, Abhinav, Karthik Ganesan, and Harsimran Kaur. 2019. India's Electric Vehicle Transition: Impact on Auto Industry and Building the EV Ecosystem

CO₂ emissions per electric car will be 8%-24% lower compared to an ICE car in 2030

SOURCE: Soman, Abhinav, Karthik Ganesan, and Harsimran Kaur. 2019. India's Electric Vehicle Transition: Impact on Auto Industry and Building the EV Ecosystem

5.7% higher value add (USD 2.7 billion) from high indigenisation

SOURCE: Soman, Abhinav, Karthik Ganesan, and Harsimran Kaur. 2019. India's Electric Vehicle Transition: Impact on Auto Industry and Building the EV Ecosystem

28 | -

Newer thermal power plants punching well below their weight

Despite having low variable cost, the PLF of 5-10 year group is low

SOURCE: CEEW adaptation from CEA daily generation reports and MERIT state-wise daily summary data NOTE: The bubble size represents the capacity share

Creating a democratic demand for clean air

225K+ views on TED.com

Best podcast! Fast overtaking my first love @TheEnergyGang

Sahba Chauhan @SahbaChauhan · Nov 7

Hosted on IVM podcasts, India's largest podcast network

1200+ downloads on Podbean

SOURCE: Ghosh (2019); CEEW IMAGE: TED/ Star

Meanwhile, a big leap forward on renewables

- Ranked 3rd globally in installed RE capacity in 2019-20 ۲
- 29% of India's total electricity was generated from RES and hydropower, with solar and wind ۰ generating 5.82% and 6.48% respectively in May 2020
- Total daily generation as of 24 August 2020 stood at 436.64 MU

0.0

India's renewable energy journey

India's solar and wind installed capacity¹

 Policy push on solar since 2014-15 has driven sharp increase in solar installed capacity

 Solar and wind tariffs have stabilised below USD c 4/kWh

2 Source: CEEW Analysis

India's RE drive is a big investment opportunity

- RE installations are a investment opportunity of USD 199 billion
- Solar parks have been instrumental for driving solar capacity addition in India by presenting a 'plug-and-play' model

 Despite this, India will require a 16% CAGR in capacity addition on the 88.091 GW and debt capital of USD 160 billion to achieve its 450 GW by 2030

There's a mismatch: Capital circulating in capital-rich regions

- In 2018, global energy investment stood at more than USD 1.8 trillion
- Only a third of that, USD 620 billion, was invested in low carbon energy
- 15% of the world's population, got 40% of the world's energy investment in 2018 in highincome countries
- Energy consumption in developing countries has doubled in the last 15 years, and will grow another 30% in the next fifteen years

Understanding the mismatch: evidence from India

May 2017 Solar Tariff

- Financing costs constitute 50-65% of Indian RE tariffs
- PV module/wind turbine costs account for only around 20% of RE tariffs
- Interest rate spreads for lending to RE projects have declined by 75-125 bps from 2014-2018, tariffs from USD 9 cents to 4 cents/kWh

SOURCE: Chawla et al (2019); Chawla and Ghosh (2019)

Greater market concentration; solar parks become attractive

Market concentration in solar energy

Share of top 5 firms in sanctioned solar projects
Share of top 10 firms in sanctioned solar projects

Share of projects at solar parks (2014-2017)

Solar investments by international IPPs

37|

What gets built and used: who bears integration costs?

a) Electricity generation range by technology WITHOUT grid integration cost levied on VRE producers

SOURCE: Chaturvedi et al / CEEW (2018)

What gets built and used: who bears integration costs?

b) Electricity generation range by technology WITH grid integration cost levied on VRE producers

Correcting the mismatch: Information and innovation

40 | -

Can green industrialisation become a growth mantra?

SOURCE: Ghosh, Chaturvedi, Bhasin (2019); Biswas, Ganesan and Ghosh (2019) IMAGE: iStock

41 |·

42|

Energy security is not the same as energy independence

A complex quest for **adequate quantities** of energy resources, at prices that are a**ffordable and predictable**, while minimising the risk of overseas **supply disruptions** and ensuring **sustainability** of the environment and of the energy system for future generations.

Focus areas for India

ASSURED SUPPLY Developing capacity for energy diplomacy Critically evaluate overseas investments

SECURE STORAGE Build domestic storage capacity Cooperative arrangements for storage Institutional capacity to manage reserves SAFE PASSAGE Invest in building fleet capacity Strengthen security partnerships in IOR

FUNCTIONAL INSTITUTIONS Transparency; dealing with supply shocks; collective security; arbitrate disputes; pooling resources; sharing best practices

EXPLOITING MARKET POWER Moving from a price taker to price influencer.

India is no longer a naysayer; India is a climate leader

CORICON Coalition for Disaster Resilient Infrastructure

SOURCE: PTI; Montreal Protocol; UNCCD; CDRI

India's energy transition has lessons for other emerging markets

Innovation: Common Risk Mitigation Mechanism

* Private institutional investors to be enrolled in a second round Source: CRMM Feasibility Study

SOURCE: CEEW, TWI, TCX (2017)

Critical minerals: CEEW scenario_2030

Source: CEEW Analysis

Critical minerals: Potential impact of recent ambitious EV targets

Source: CEEW Analysis

Effective tech partnerships: Global Green Hydrogen Alliance?

Guiding principles

- Objectives matter
- Prices matter
- Pooling resources
- Innovative finance
- Risk and responsibility
- Voice in governance

Modalities

- Emerging economies as the test-beds
- Joint development unlike Mission Innovation would mitigate concerns around IP monopoly or IP theft
- Funding from public and private sources, in cash and in kind
- Consider high mitigation potential
- Also assess risks against inaction or insufficient action on climate mitigation

Disruptions create winners and losers

GRAND BALL GIVEN BY THE WHALES IN HONOR OF THE DISCOVERY OF THE OIL WELLS IN PENNSYLVANIA.

Thank you ceew.in | @CEEWIndia

